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Abstract - Different statistical methods for face recognition have been proposed in recent years. They mostly 
differ in the type of projection and distance measure used. The aim of this paper is to give an overview of most 
popular statistical subspace methods for face recognition task. Theoretical aspects of three algorithms will be 
considered and some reported performance evaluations will be given.

Keywords - Face Recognition, PCA, ICA, LDA, Subspace Analysis

1. INTRODUCTION 

 Face recognition has gained much attention in 
recent years and has become one of the most 
successful applications of image analysis and 
understanding. Face recognition conferences are 
emerging and sophisticated commercial systems 
have been developed that achieve rather high 
recognition rates. A general statement of the 
problem can be formulated as follows [1]: Given 
still or video images of a scene, identify or verify 
one or more persons in the scene using a stored 
dataase of faces. This area of research is important 
not only because of the applications in human-
computer interaction, biometrics and security, but 
also because it is a typical, pattern recognition 
problem that, if successfully solved, could help 
solve other pattern classification problems. 
 The first approach used for recognizing faces 
(and the most intuitive one) was correlation, but all 
such methods were computationally expensive so it 
was only natural to pursue dimensionality reduction 
schemes.  
 In this paper, three appearance-based statistical 
methods, namely Principal Component Analysis 
(PCA), Independent Component Analysis (ICA) and 
Linear Discriminant Analysis (LDA), are described. 
PCA [2], [3], [4] is a subspace projection technique 
widely used for face recognition. It finds a set of 
representative projection vectors such that the 
projected samples retain most information about 
original samples. The most representative vectors 
are the eigenvectors corresponding to the largest 
eigenvalues of the covariance matrix. While PCA 
deals with variance (second-order statistics), ICA [5] 
captures both second and higher-order statistics and 
projects the input data onto the basis vectors that are 
as statistically independent as possible. We can state 

that ICA is a generalization of PCA. LDA [6], [7], 
unlike PCA or ICA, uses the class information and 
finds a set of vectors that maximizes Fisher 
Discriminant Criterion. It simultaneously maximizes 
the between-class scatter while minimizing the 
within-class scatter in the projective feature vector 
space. While PCA and ICA can be called 
unsupervised learning techniques, LDA is 
supervised learning technique because it needs class 
information for each image in the training process. 
 When face recognition was at its beginning each 
research group collected their own database of 
images (e.g. Harvard, USC etc). Later, there 
emerged a need for a uniform benchmark database 
and thus FERET database was collected at NIST 
(National Institute of Standards and Technology) [8] 
and became the most used face database for testing 
race recognition algorithms. The images were 
collected between 1993 and 1996. The proposed 
gallery set for frontal face recognition consists of 
images of 1,196 individuals and probe images are 
divided into four sets, namely fb, fc, dupI and dupII
set (for details please refer to [8]) However, many 
authors agree that FERET database favors one sort 
of algorithms so there are other databases that are 
comparable to FERET and are often used for testing 
today (Yale [9], AR [10], XM2TVS [11], CMU PIE 
[12]). They are collected for specific purposes and 
so the AR database contains occlusions due to eye 
glasses and scarf and the CMU PIE database is 
collected with well-constrained pose, illumination 
and expression. The Yale database contains 160 
frontal face images covering sixteen individuals 
taken under ten different conditions (different 
illumination and expression). The XM2TVS 
database is especially designed for multi-modal 
biometrics, including audio and video cues and is 
not available free of charge. 
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 The rest of this paper is organized as follows: in 
Section II the idea of face space in comparison to 
image space is given, Section III deals with linear 
subspace analysis describing three most popular 
methods in that area, in Section IV performance 
comparison of described methods (as reported by 
other research groups) is given. 

2. FACE SPACE 

 Generally, a two dimensional image (x,y) of 
size m-by-n pixels can be viewed as a vector (or a 
point) in high dimensional space. The easiest way to 
create a vector from an array is to concatenate its 
columns, thus getting a vector X = [x1...xN]T, where 
N = m n. Each pixel of the image then corresponds 
to a coordinate in N-dimensional space. We will 
refer to this space as image space. Such a space has 
huge dimensionality ( N) and recognition there 
would be computationally inefficient. 
 However, if an image of an object is a point in 
image space, a collection of M images of the same 
sort of an object represents a set of points in the 
same subspace of the original image space. These 
points may be considered as samples of probability 
distribution. Theoretically, all possible images of 
one particular object define a lower-dimensional 
(possibly disconnected) manifold, embedded within 
the high-dimensional image space. For face 
recognition purposes we refer to this as face space.
Its intrinsic dimensionality is determined by the 
number of degrees of freedom within face space. 
Appearance-based object recognition (i.e. subspace 
analysis) deals with the following questions [2]: 
what is the relationship between points in image 
space that correspond to all images of a particular 
object (face)? Is it possible to efficiently 
characterize this subset of all possible images? Can 
this subset be learned from a set of training images? 
What is the "shape" of this subset? 
 Basically, the goal of subspace analysis is to 
determine the intrinsic dimensionality and to extract 
the principal modes (basis functions) of the principal 
manifold. By doing this in a subspace, compression 
is achieved (computational efficiency), data samples 
are drawn from a normal distribution (meaning that 
axes of large variance probably correspond to data 
while axes of small variance are probably noise) 
and, because data will be mean centered, Euclidian 
distance in subspace is inversely proportional to 
correlation between source images. 

3. LINEAR (SUBSPACE) ANALYSIS 

 In the following sections three classical linear 
appearance-based classifiers (PCA, ICA and LDA) 

will be described. Each of these has its own set of 
basis functions which are derived based on different 
statistical viewpoints. After deriving basis vectors, a 
face image is projected onto them and the projection 
coefficients are used as the feature representation of 
each face image. The matching score between the 
test image and each training image is calculated 
between their coefficients vectors where the largest 
value represents the recognized object. The 
necessary assumption for all these classifiers is that 
the principal manifold is linear.

3.1. Principal Component Analysis (PCA) 

 Principal Component Analysis (PCA) [3], [4] is 
a method to efficiently represent a collection of 
sample points, reducing the dimensionality of the 
description by projecting the points onto the 
principal axes, where an orthonormal set of axes 
points in the direction of maximum covariance in the 
data [2]. These vectors best account for the 
distribution of face images within the entire image 
space. PCA minimizes the mean squared projection 
error for a given number of dimensions, and 
provides a measure of importance (in terms of total 
projection error) for each axis. 
 PCA is closely related to popular signal 
processing technique known as the Karhunen-Loeve 
transform (KLT). It can in fact be shown that under 
the assumption that the data is zero-mean the 
formulations of PCA and KLT are identical [13]. 
 Let us now describe the PCA algorithm as 
proposed in [3]. First we will create the eigenspace.
This step is the initialization of the system. Let the 
training set of M face images be 1, 2, ... , M. The 
average face of the set is defined by: 

M

n
nM 1

1  (1) 

 Each face differs from the average face by the 
vector i = i - , where i = 1 to M. We shall 
rearrange these vectors in a matrix A = [ 1,..., M] of 
dimension N M, which will then be subject to PCA. 
Matrix A has zero-mean (mean value subtracted) 
vectors of each training face image in its columns. 
What we have just done is in fact a translation of the 
origin to the mean face (see Fig. 1. for the 
illustration of the mean face). 
 The next goal is to find a set of M – 1 orthogonal 
vectors, ei, which best describes the distribution of 
the input data in a least-squares sense, i.e., the 
Euclidian projection error is minimized. We start by 
finding the covariation matrix:

TAAC  (2) 

and then we use eigenvector decomposition: 
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iii eeC  (3) 

where ei and i are eigenvectors and eigenvalues of 
covariation matrix C, respectively. We can do this 
because C is real and symmetric.  is a diagonal 
matrix with eigenvalues on its main diagonal. 

Fig. 1. Mean face calculated from 1,196 FERET 
gallery images [8]. 

 Once the eigenvectors of C are found, they are 
sorted according to their corresponding eigenvalues. 
Larger eigenvalue means that associated eigenvector 
captures more of the data variance. The efficiency of 
the PCA approach comes from the fact that we can 
eliminate all but the best k eigenvectors (with the 
highest k eigenvalues). Since PCA assumes the 
directions with the largest variances are the most 
principal (important), these eigenvectors will then 
span the M' dimensional face space and that is the 
new feature space for recognition. Eliminating 
eigenvectors associated with small eigenvalues 
actually eliminates the noise from the image. 
 There are at least three proposed ways to 
eliminate eigenvectors. First is the mentioned 
elimination of eigenvalues with smallest 
eigenvalues. This can be accomplished by 
discarding the last 60% of total number of 
eigenvectors. The second way is to use the minimum 
number of eigenvectors to guarantee that energy E is 
greater than a threshold. A typical threshold is 0.9 
(90% of total energy). If we define Ei as the energy 
of the ith eigenvector, it is the ratio of the sum of all 
eigenvalues up to and including i over the sum of all 
the eigenvalues: 

k

j
j

i

j
j

iE

1

1  (4) 

where k is the total number of eigenvectors (Fig. 2.). 

 The third variation depends upon the stretching 
dimension. The stretch for the ith eigenvector is the 
ratio of that eigenvalue over the largest eigenvalue 
( 1):

1

i
is  (5) 

 All eigenvectors with si greater than a threshold 
are retained. A typical threshold is 0.01. Some 
authors also discard the first few eigenvectors 
because they seem to capture mainly the lighting 
variations (this can be confirmed by looking at the 
first two faces at the top row of Fig. 5.). However, it 
is rather questionable if this last step actually 
improves recognition rate. 

Fig. 2. Energy captured by retaining the number of eigenvectors 
with the largest eigenvalues, calculated from 1,196 FERET 
gallery images [8]. It is clearly seen that retaining only 200 
eigenvectors (of total 1,196 vectors) captures more then 90% of 
the energy. 

 Each eigenvector has the same dimensionality as 
a face image and looks as a sort of a "ghost" face (if 
rearranged and viewed as a picture), so we call them 
eigenfaces (Fig. 5, top row). Transforming a point to 
a new space is a linear transformation so 
eigenvectors are merely linear combinations of the 
training images. The last step is to calculate the 
average face image for each individual (if there is 
more than one instance of that individual) and to 
project this image into the face space as the 
individual's class prototype. Ideally, two images of 
the same person should project to the same point in 
eigenspace. Any difference between the points is 
unwanted variation. Two images of different 
subjects should project to points that are as far apart 
as possible. This is the main idea behind the 
recognition in subspaces. 
 After creating the eigenspace we can proceed to 
recognition using eigenfaces. Given a new image of 
an individual , the pixels are concatenated the same 
way as the training images were, the mean image 
is subtracted and the result is projected into the face 
space:

)(T
kk e   (6) 

for k = 1, ... ,M'. These calculated values of 
together form a vector T = [ 1 2 ... M'] that 
describes the contribution of each eigenface in 
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representing the input face image. In fact, this is the 
projection of an unknown face into the face space. 
is then used to establish which of the pre-defined 
face classes best describes the new face. The 
simplest way to determine which face class provides 
the best description of the input face image is to find 
the face class k that minimizes the Euclidian 
distance:

2
kk  (7) 

where k is a vector describing the kth face class. A 
face is classified as belonging to a certain class 
when the minimum k (i.e. the maximum matching 
score) is below some certain threshold. Besides 
Euclidian distance other similarity measures or 
metrics can be used, such as L1 norm (also called 
the City Block Distance): 

k

i
ii yxyxyxd

1
),( , (8) 

where x and y are any two vectors, or Mahalanobis 
distance:

k

i
ii

i

yxyxd
1

1),(  (9) 

where i is the ith eigenvalue corresponding to the 
ith eigenvector. 
 There is one important property of PCA that 
needs to me mentioned. In order for PCA to work 
one must assume that mean and variance are 
sufficient statistics to entirely describe the data. The 
only zero-mean probability distribution that is fully 
described by the variance is the Gaussian 
distribution. In the next section we shall describe an 
algorithm that works even if the distribution of data 
is not Gaussian. In practice though, quite a lot of the 
real world data are Gaussian distributed (thanks to 
the Central Limit Theorem) and PCA thus represents 
good means to roughly describe the data. 

3.2. Independent Component Analysis (ICA) 

 As seen in the previous section, PCA makes one 
important assumption: the probability distribution of 
input data must be Gaussian. When this assumption 
holds, covariance matrix contains all the information 
of (zero-mean) variables. Basically, PCA is only 
concerned with second-order (variance) statistics. 
The mentioned assumption need not be true. If we 
presume that face images have more general 
distribution of probability density functions along 
each dimension, the representation problem has 
more degrees of freedom. In that case PCA would 
fail because the largest variances would not 
correspond to meaningful axes of PCA. 
 Independent Component Analysis (ICA) [5] 

minimizes both second-order and higher-order 
dependencies in the input. It keeps the assumption 
of linearity but abandons all other that PCA uses. 
 Although the amplitude spectrum is captured by 
second-order statistics in PCA, there remains the 
phase spectrum that lies in higher-order statistics. It 
is believed that this high-order statistics (i.e. the 
phase spectrum) contains the structural information 
in images that drives human perception [5]. 
 ICA attempts to find the basis along which the 
data (when projected onto them) are – statistically 
independent. Mathematically, if (x,y) are two 
independent components (bases), then: 

yPxPyxP ,  (10)

where P[x] and P[y] are distributions along x and y
and P[x,y] is the joint distribution. To put it simply, 
ICA is a way of finding a linear non-orthogonal 
coordinate system in any multivariate data. The 
directions of axes of this coordinate system are 
determined by both the second and higher order 
statistics of the original data. The goal is to perform 
a linear transform, which makes the resulting 
variables as statistically independent from each other 
as possible. It is a generalization of PCA (so PCA 
can be derived as a special case of ICA). It is closely 
related to blind source separation (BSS) problem 
(Fig. 3.), where the goal is to decompose an 
observed signal into a linear combination of 
unknown independent signals [14]. 

Fig. 3. Blind source separation model. 

 Let s be the vector of unknown source signals 
and x be the vector of observed mixtures. If A is the 
unknown mixing matrix, then the mixing model is 
written as x = A s, where source signals are 
independent of each other and A is invertible. ICA 
tries to find the mixing matrix A or the separating 
matrix W such that 

sAWxWU  (11) 

is the estimation of the independent source signals 
[13]. There are many algorithms that perform ICA 
(InfoMax [13], JADE [15], FastICA [16]) but they 
all seem to converge to the same solution for any 
given data set. Their main principle is to iteratively 
optimize a smoothing function whose global optima 
occurs when the output vectors U are independent. 
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 ICA can be used in face recognition in two 
different ways [5]. It is standard practice to refer to 
them as Architecture I and Architecture II and this 
nomenclature will be adopted here as well. Their 
basic differences can be seen in Fig. 4. 

Fig. 4. Two architectures for performing ICA on faces [5]. (a) 
Performing source separation on face images produced 
independent component images in the rows of U. (b) The gray 
values at pixel location i are plotted for each image. ICA 
Architecture I finds weight vectors in the directions of statistical 
dependencies among the pixel locations. (c) U has factorial code 
in its columns. (d) ICA Architecture II finds weight vectors in the 
directions of statistical dependencies among the face images.

Fig. 5. An illustrative example of differences between PCA, ICA 
Architecture I, ICA Architecture II and LDA. Top row shows top 
eight PCA eigenfaces. The second row shows localized feature 
vectors for ICA Architecture I. The third row shows eight non-
localized ICA feature vectors for ICA Architecture II. Bottom row 
shows LDA representation vectors (Fisherfaces).

 In Architecture I [5], [14] the input face images 
X are considered to be a linear mixture of 
statistically independent basis images S combined by 
an unknown matrix A. Each row vector of X is a 
different image. ICA learns the weights matrix W

(Fig. 4. (a), (b)) such that the rows of U = W  X are 
as statistically independent as possible. In this 
architecture, the face images are variables and pixel 
values are observations. The source separation is 
performed in face space and the source images 
estimated by the rows of U are then used as basis 
images to represent faces. The compressed 
representation of a face image is a vector of 
coefficients used for linearly combining the 
independent basis images to generate the image 
(much like the PCA). Eight sample basis images 
(rows of U, each one rearranged to original image 
format) derived this way can be seen in the second 
row of Fig. 5. Notice the spatial localization, unlike 
the PCA (top row) or Architecture II (bottom row). 
The following conclusion can be drawn from this 
example: each row of the mixing matrix W found by 
ICA represents a cluster of pixels that have similar 
behavior across images. We say that Architecture I
produces statistically independent basis images.

Although the basis images obtained in 
Architecture I are approximately independent, the 
coefficients that code each face are not necessarily 
independent. In Architecture II [5], [14], the goal is 
to find statistically independent coefficients for 
input data. The rows of data matrix X are now 
different pixels and the columns are different 
images. The pixels are now variables and the images 
are observations (Fig. 4. (c), (d)). The source 
separation is performed on pixels and each row of 
the learned weight matrix W is an image. A (inverse 
matrix of W) contains the basis images in its 
columns. The statistically independent source 
coefficients in S that comprise the input images are 
recovered in the columns of U. Eight sample basis 
images derived this way can be seen in the third row 
of Fig. 5. In this approach, each column of the 
mixing matrix W-1 found by ICA attempts to "get 
close to a cluster of images that look similar across 
pixels". This way, Architecture II tends to generate 
basis images that are even more face-like than the 
one derived by PCA. In fact, the basis found by ICA 
will average only images that look alike. We say 
that Architecture II produces statistically 
independent coefficients (it is sometimes called 
factorial code method as well). 
 If training data for face recognition system 
would have 500 images, ICA algorithm would try to 
separate 500 independent components, which has 
high computational complexity, if not impossible. 
That is why it is common practice to perform ICA 
on the PCA coefficients (rather then directly on the 
input images) to reduce the dimensionality [5]. 
 Face recognition using ICA can be summarized 
by the following: compare the test image 
independent components with the independent 
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components of each training image by using a 
similarity measure. The result (the recognized face) 
is the training image, which is the closest to the test 
image. Similarity measure used in [5] was the 
nearest neighbor algorithm with cosine similarity. 
Let b denote the coefficient vector. Coefficient 
vectors in each test set were assigned the class label 
of the coefficient vector in the training set that was 
most similar as evaluated by the cosine of the angle 
between them: 

traintest

traintest

bb
bbc  (12) 

 Comparison of reported performance will be 
given in Section IV. 

3.3. Linear Discriminant Analysis (LDA) 

 Both PCA and ICA do not use face class 
(category) information. The training data is taken as 
a whole. Linear Discriminant Analysis (LDA) finds 
an efficient way to represent the face vector space 
by exploiting the class information [6], [7]. It 
differentiates individual faces but recognizes faces 
of the same individual. LDA is often referred to as a 
Fisher's Linear Discriminant (FLD). 
 The images in the training set are divided into 
the corresponding classes. LDA then finds a set of 
vectors WLDA such that Fisher Discriminant Criterion 
is maximized: 

WSW
WSWW

W
T

B
T

WLDA maxarg  (13) 

where SB is the between-class scatter matrix and SW

is the within-class scatter matrix, defined by: 
c

i
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where Ni is the number of training samples in class i,
c is the number of distinct classes, i is the mean 
vector of samples belonging to class i and Xi

represents the set of samples belonging to class i. SW

represents the scatter of features around the mean of 
each face class and SB represents the scatter of 
features around the overall mean for all face classes. 
These vectors, the same as the PCA vectors, if 
rearranged are very face-like, so they are often 
called Fisherfaces (Fig. 5, bottom row). 
 It is not difficult to demonstrate that the solution 
of the maximization problem of (13) is the solution 
of generalized eigensystem: 

VSVS WB  (16) 

where V is the eigenvector (fisherfaces) matrix and 
 are the corresponding eigenvalues of the within-

class and between-class scatter matrices. This 
system is easily solved if written like this: 

VVSS BW
1  (17) 

 This approach can produce some problems. Let 
us state some of them: 1) this eigensystem does not 
have orthogonal eigenvectors because BW SS 1  is, in 
general, not symmetric, 2) matrices SB i SW are 
usually too big, 3) SW could be singular and then 
noninvertible. All these problems can be bypassed 
by using the PCA decomposition previous to LDA 
[6]. However, the system in (13) will then give 
reduced eigenvectors v, that need to be transformed 
into true eigenvectors V using VFF=v VEF, where VEF

and VFF are the PCA and fisher projection matrices, 
respectively [17]. 
 After the eigenvectors have been found (and 
only the ones corresponding to largest eigenvalues 
have been kept), the original images are projected 
onto them by calculating the dot product of the 
image with each of the eigenvectors. Recognition is 
again done by calculating the distance of the 
projected input image to all the training images 
projections, and the nearest neighbor is the match. 

4. PERFORMANCE COMPARISON 

 Let us now make a comparison between these 
methods. In all three algorithms, classification is 
performed by first projecting the input images into a 
subspace via a projection (basis) matrix and then 
comparing the projection coefficient vector of the 
input to all the pre-stored projection vectors or 
labeled classes to determine the input class label. 
 Various groups have reported various 
performance results for these three algorithms over 
the years and no straightforward conclusion can be 
easily drawn. 
 Zhao et al [18] report improved performance for 
combined PCA and LDA approach over the pure 
LDA. In [6] four methods were compared 
(correlation, a variant of linear subspace method, 
PCA and PCA+LDA). The results showed that 
PCA+LDA performed significantly better than the 
other three methods. In [17] authors state that LDA 
with cosine distance measure outperformed all other 
tested systems, claiming that LDA dimensionality 
reduction works better than other projection 
methods. However, Beveridge et al [19] state that on 
their tests using different distance measures the 
LDA algorithm performed uniformly worse than 
PCA, but they do not give any explanation as to why 
it is so. Martinez et al [7] argued that for a small 
training set (two images per class) PCA can 
outperform LDA, but this is not the case for a larger 
training set. 
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Table 1. Results reported by different research groups testing three described algorithms 

Research group Database Algorithms tested Best result 
Zhao [18] FERET & USC LDA, PCA+LDA PCA+LDA 
Belhemur [6] Harvard & Yale Correlation, Linear Subspace, PCA, LDA LDA 
Navarrete [17] FERET & Yale PCA, LDA, EP LDA 
Beveridge [19] FERET PCA, PCA+LDA PCA 
Bartlett [5] FERET PCA, ICA ICA 
Baek [20] FERET PCA, ICA PCA 
Liu [21] FERET PCA, LDA, ICA ICA 

 Comparing PCA and ICA, Bartlett et al [5] 
report that both ICA representations (Architecture I
and II) outperformed the pure PCA, for recognizing 
images of faces sampled on a different day from the 
training images. A classifier that combined two 
representations outperformed PCA on all test sets. 
However, the work done in [20] clearly contradicts 
the one in [5]. Liu et al [21] suggest that for 
enhanced performance ICA should be carried out in 
a compressed and whitened space where most of the 
representative information of the original data is 
preserved and the small eigenvalues discarded. The 
dimensionality of the compressed subspace is 
decided based on the eigenvalue spectrum from the 
training data. The discriminant analysis shows that 
the ICA criterion, when carried out in the properly 
compressed and whitened space, performs better 
than the eigenfaces and Fisherfaces methods, but its 
performance deteriorates significantly when 
augmented by an additional discriminant criteria 
such as the FLD. Many other authors claim that 
PCA (or some of its modifications) by far 
outperforms both ICA and LDA. 

5. CONCLUSION 

As seen in the previous section, no 
straightforward conclusion can be drawn on overall 
performance results of three described algorithms. 
At best, we can state that each of these algorithms 
performs best for a specific task.  
 However, we believe that there are not enough 
independently conducted comparisons of these three 
algorithms, performed under the same initial 
conditions (i.e. the same preprocessing – image 
rotation, cropping, enhancement). Furthermore, 
never are all possible implementations considered 
(various projection methods combined with various 
distance measures). Our further work will consist of 
implementing the described algorithms in Matlab

and testing them using as many as possible different 
similarity measures, to try to produce the best 
combination for a specific task. We expect to face 
some difficulties in directly comparing LDA to other 
two algorithms because of its need for more than 
one image of an individual, so we will have to think 
of the methodology to overcome that issue 
(following the lead of [19] and [20] perhaps). Also, 
a fair comparison technique should be designed 
regarding the dimensionality of recognition and 
intermediate subspaces and algorithm performance. 
Perhaps the best way is to test couple of possible 
dimensionalities and to report and compare only the 
best results for a specific algorithm given the same 
task.  
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